Finite-dimensional non-associative algebras and codimension growth
نویسندگان
چکیده
منابع مشابه
Finite - dimensional non - commutative Poisson algebras ]
Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie algebra structure together with the Leibniz law. For finite-dimensional ones we show that if they are semisimple as associative algebras then they are standard, on the other hand, if they are semisimple as Lie algebras then their associative products are trivial. We also give the descriptions of ...
متن کاملNon-associative algebras associated to Poisson algebras
Poisson algebras are usually defined as structures with two operations, a commutative associative one and an anti-commutative one that satisfies the Jacobi identity. These operations are tied up by a distributive law, the Leibniz rule. We present Poisson algebras as algebras with one operation, which enables us to study them as part of non-associative algebras. We study the algebraic and cohomo...
متن کاملAssociative Conformal Algebras with Finite Faithful Representation
The notion of conformal algebra appears as an algebraical language describing singular part of operator product expansion (OPE) in conformal field theory [BPZ]. Explicit algebraical exposition of this theory leads to the notion of vertex (chiral) algebra (see, e.g., [B], [DL], [FLM]). Roughly speaking, conformal algebras correspond to vertex algebras by the same way as Lie algebras correspond t...
متن کاملFinite Dimensional Hecke Algebras
This article surveys development on finite dimensional Hecke algebras in the last decade. In the first part, we explain results on canonical basic sets by Geck and Jacon and propose a categorification framework which is suitable for our example of Hecke algebras. In the second part, we review basics of Kashiwara crystal and explain the Fock space theory of cyclotomic Hecke algebras and its appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2011
ISSN: 0196-8858
DOI: 10.1016/j.aam.2010.04.007